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O

LBSTRACT -

The primary objective of this study is to derive a math-

ematical model to predict the detection probi)ility of a

target which noves randomly, according to a two-dimensionai

diffusion model. This model assumes that there is a

stationary searcher which has a "cookie-cutter" sensor with

radius R. In order to construct this model, a Monte Carlo

simulation program is used to generate detection probabili- 5
ties. It is demonstrated that this model =an be used

asymptotically to predict an upper bound detection prob-

ability of an "equivalent" random tour target.
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I. DESCRIPTION OF THE DIFFJSION MODEL

A. INTRODUCTION

The main oLjective of this thesis is to fin and test a.

experimental mathematical model whicn predicts the ;roD-

ability of detecting a two-dimensional ticet a

stationary searcher. This model will be shown to provide an

upper bound for the -robaLility of detection Ly : stationary

searcher of a tarzet conducting a "random tour" 'Ref. 1]

B. DESCRIPTION OF DIFFUSION MODEL

1. 'he Searcher location

The searcher is assumed to be located in the center

of a sc uare search region of area A. This location is held

fixed during the search period. The searcher ias a detec-

tion capability over a disk of radius R. The dete:tior.

probability of a target inside of this disk is 1 and outside

is 0. :he searcher thus has a "cookie- cutter" sensor with

detection range F. [Ref. 2 J

2. The Tarcget Startinq Position

The target's starting position is uniformly

distributed over the square search region A.
0

3. Motion of the Target

7n our diffusion model, the target moves randoily

over the area A as a diffusing particle which ceflects off

ti.e area boundaries. The diffusion zonstant is D, which has

dimensions of area per unit of time. In any time interval

of length at that does not contain a boundary reflection,

0

" 1
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components of the target's position on the X and Y axes

suffer increments which are indepndent of all previous

increiaents and which are eacn distributed normally with mear,

0 and variance Ddt.

Still ignoring boundary effects, the diffusion

assumption results in the tarjet's location at time t having

a circular bivariate normal probakility distribution with

mean of the starting position and variance of Dt.

Thus the probability density of the tacget's loca-

tion at time t is

2TrEt -p2f (x~y,t)= 2 CX 2x0t /(1)

where (Ux,UV) is the target's starting position. Adding 

the effects of boundary reflection sigaificantly complicates

the calculation of f(x,y,t) and leads to the necessity of

using simulation to attack this problem.

4. Detection

Detection occurs whenever the target enters the

searcher circular detection disk which has a radius R.

C. DIFFUSION SIMJLATION MODEL (DIFSIM)

A Monte Carlo simulation computer model (DIFSIM) is used

to genarate detection probabilities for this dif fusion

model. This program is written in FORTRAN and designed for

use at the Naval Postgraduate School(NPGS) It uses the new

version of the NPS Random Number Genarator Package, called

LLRANDOMII in order to generate Jniform and Normal random

num bers.

1-
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1. In uts

* Area size, A, in s uare nautical miles.

a Diffusion constant, D, in square nauticil miles :el"

hour.

* Padius of detection disk, P, in nautical mils.

* Numher of replications.

* Detection period as an hour.

a Time increment, Lt, for each discrete step in mlnitez.

2. Functioninq of Pr3oqram

The initial target ositio: is stle:ted -rou a

bivariate uniform distribution over the search re io. A.

Subsequent target positions are determined by a discrtete

approximatior of the diffusion. We Lake the following defi-

nit ions,

X=x component of current location

=y component of current location

X'=x component of new location at the en!

of time increment 4t

Y'=y component of new location at the end

of time increment At

Then,

X x + (D8t)

Y'=y+ %(Ddt)lh

where 0 and OarE drawn independently from a standard normal

distribution.

In this model a 5 minute Ot is used. Different time

ircrements, varying from 1 ainate ap to 15 minutes, Lave

. 11
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been tested and 5 minutes has been a:cepted as a good value.

For smaller time increments the simulation pro;Lam took too

lony in computer execution time. As shown in Fiy'are 1.1

there is no significant differerne in ,robaoility curves

between 5 minute increments and smaller time increments.

12
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Wher. the target enrounters a bour.dary, a reiect o:.

is made to keep the target inside tue searzn area. 1h

tarjet's Y' position after a reflection is given as follows:

Y'< 0 => Y' becomes -Y'

Y'> a => Y' becomes 2a-Y'

where a is the length of a side of tae sqaare seizch area A. 0

The target reflects in the X directioa in a slmilar manner.

retection occurs whenever the target enters the

detection disk. This event can be ae.ined analytically as

follows: 0

(X--) 2 Y- 12_ R2

3. Cutput

For each time t, the simulation output is the ratio

No/NT where

No=number of re lications jivin4 a detection by time t,

N =total number of uonte Carlo Replications used in the

simulation.

1
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II. CCNNECTION BETWEEN RANDOII TOUR AND DIFFUSZON MODEL

A. DESCEIPTI3N OF RANDOM ro0E MODEL

In the random tour model considered here, the target is

assumed to move at a constant speed aud to make course

changes at random times. Each aew course is drawn iro.

uniform distribution on '0,21l]. The lengths 3f the time

between course caanges is exponentially distributed with

mean 1/A.

An analytic expression for the probability density of

the target's positicn after a random tour of length t was

derived in [Ref. 1] Given the taroet's initial position at

the origin of a two-dimensional c3ordinate system, this

expressicn is

ZL (2.1)..

where

V=target speed (nautical mile iu per hour)

A=course change rate (hri)

t=time (hrs)

X .

The Dirac 6_function component of g (x, y, t) arises _-o-
the fact that with probability e the tar4:?t does not

finish the first step by time t. In other words, th. tirget

makes no course change through time t. Therefore, its prob-

ability mass is concentrated on the boundary of a disk of

radius vt and centered at the origin.

16
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P. CCI:NECTIOI: Br:S:EtI EL!:DOM TO0I. wA DIFFUSION r'C):L-LS

ULi'l.i1l at time t. T hcr

F2=x 2 + y2

u~ expression for E[ R2 ] for tLe zindor, toac woe as

etrivcJ in [Ref. 3) as --ollow~s:

LL R2 ='(X2+y2) g (y,y t) dxdy (2.2)

O X 2+y 2 < (Vt ) 2

Substituting (2. 1) ito (2. 2) d~ trai:sforming to 'cola.-

coordiniates, we obtain

IZr qj

3 e- At___

E[R 2 1 r

E[R2 1 = e~, (V t) 23((x

At

=~ + -I't2( + drd- 1X2)dx (3
0

V17



. . . .I ti - :- r . . c. . .. .. 3)_ , .. ._ t u=_ 1. .- . - . - - -= . - - - -

t] t

l-x 2

= ,t / (1 - u 2 )  exp(/'tu) du

f '

Nt 1 ( v

=e - 1- t) ~ ye dy

2 e t (At -1 + e - 1 (2.4)

(ot),2

From (2.2) ani (2.4) we then have

v 2  x t

E[R 2 ] = 2 -(Xt - 1 + e )
A 2

2V
2 t 1_-e _-

N , 1 X )(2.5)

in the calculation of ER 2  I for diffusion model with

diffusior constant D , the tarcet' s initial position is

assumed to he at the oriyin of a tw3-damer.sionl coordinldte

system. .e have

E.Rj2 ] = E[C2+Y2 ]=EZX2 ]+ECY 2 ] (2.6)

18
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S.Lnce X and Y are independent and uncorrelatei, they have

normal marginal distributions. So,

X- 1i (0, Dt}

Y-N (0 ,Dt)

an d

Z X (2 ]=Var[ X X (EX ]) 2Dt+O=Dt

E[ y2]=Var[Y ]+ (EY]) 2=Dt+O=Dt

If we suhstitute these EX 2 ] and E Y2 ] values int o (2.6), we

get

ECR2] = E[ X2 +E[Y 2 J=DtDt=2Dt (2.7)

As described in [Ref. 3] for tae random t3ur model, as t

goes to infinity the Central Limit Theorem reauires that

g(x,y,t) becomes asymptotically circular bivariate normal

with mean p =0 and variance C2=Vt/6. This result can be

obtained by using the formula (2.5) and letting t go to

infinity.

-At

Lim E[R 2 ]=Lim (1" (2.6_- )V2 •A (2.)
t--> CF t-

By comparing the ecuations (2.7) and (2.8), it is seten

that as t becomes lar,,e, a random tour can be ipproxizated

by a diffusion with diffusion constant

V2-
(2.9)

To examine the relationship between a random tour and

its "equival.nt" diffusion, two simulations were used.

Example results of these two simulation programs, DIFSIM and

19
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PASS are displayed in Figure 2. 1. 3th rograzs are Monte

Carlo search simulations. For PASS (Pdssive Acoustic

Submarine Simulation), [Ref. 4] the target motion model is a

random tour. In DIFSIM (Diffusion Simuldtion), the tary3et

moves as a diffusing particle. In b3th cases, tte searc.7er

is stationary at the center of a 100 r.nm x 105 nn, seazcL

area and has a cookie citter sensor with detection rant

15nm. The target reflects ozf the area boundaries. !he

initial target position was selected uniformly over the

search area, and each replication of the simalation was

allowed to continue until the target moved witLin distance

15 rm of the searcher.

To 9enerate the results shown in Figure 2.1 , the

following 5 different pairs of A and V are used as a rate of

course change and speed of target in the PAS3 simulation

model.

(5. (0.0 5. 0 0.. m/h2 1. 2.2 4 2) r/hr

If we use equation (2.9), we may 3et an "equivalent" diffu-

sion constant 103 nm 2/hr, by using eac.h ditferent (A,7)

pair. Thus 100 nm 2/hr is used as a diffusion constant iii

tie DIFSIM in order to get an "equivalent" diffusion model.

As demonstrated, detection probabilities are asymptoti-

cally very close to each other as t increases. But during

the early search hours, detection probauilities for a diffu-

sion model are higher than the promabilities which are

generated by the random tour model.

If we recall the the equations (2.5) and (2.8) we will

see that

2V"
EC - -2 ]< 2- =2,-t-.-..-.."

20



Thus the approximation of ELE2 ] for the random tour

model Ly using the diZusion model always leads to aL

OVEES:IiATE of EL ' q.

In the diffusion model we maj expect that the target

will move a greater distance frow tue origin t2an does the

target in the "eguivalent" random toar modei. It is there-

fore reasonable to expect that the difzusing taz et wil11

encounter a stationary searcher more quickly thar will .a

target conducting an "ecuivalent" random tour. 2his conjcc-

ture has been supported Ly further simulation testing; diso

supported is the fact that the two processes are asymptoti-

cally identical.

An experimental analytical model will be constructed for

the diffusicn model in the next section.

I -
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III. ESTABLISHMENT OF THE ANALYTICAL MODEL

in this c~aptcr,a-d with simuiation results from DIY7SI1,

an experimEntal analytical model will De constructed for

Frelictin the probaility of a diffusion tarjet entering a

stationary disk by scme time t.

A. ASSUMPTIONS

The fcllowinj assumptions are used in our model

*The searcher is fixed at the center of a sluare search

region of area A.

*The searcher has a detection capability over a disK of

radius F. with a detectior probability of 1 within the

disk and 3 outside. (i.e, a cookie-cutter detector).

*The target's starting position is uniformly distrihbted

over a search region A.

eThe target moves randomly over the area A as a diffusion i

particle with diffusion constant D.

*The target reflects off the area boundaries.

*A target can be detected only once by the seaccher

B. CLASSIFICATION OF THE VARIABLES

The variables in our model are,

*First detection probability, P.

eSearch area, A (nm2).

*Searchec detection disk radius, R (am).

*Target liffusicn coistant, D (nm 2/hr)

23
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S*Tizae, t (hr).

The first detection probability, P, is the depandent vari-

a.le. The rcmaining variables A,h,D aid t arZ i.e1)ndert.
That is.

P= f(A,, D, t)

C. CCUS EUCTION 3F THE MODEL

Figure 3. 1 shows four plots of the proDmaility of a

target detection by time t as estimated by the [ionte Carlo

simulation DIFSI1. If we look at tnese cirve, w! will

otserve that all of them have an increasing tc-nd an-d t.e,3v

approach 1 asymptotically. It also appears a- Ji the seccal

derivative must be negative everywhece. Figure 3.2 4lots 1

minus the same data on a log scale. The fact tiat these
plots are very nearly linear suggests the zollowin fanc-

tional form P(t).

P(t)=1-xe-' (3. 1)

where a and p are determined by tne problem parameters R,A

and D. After conducting 23 separate simula tions with

differeht values of R,A and D, the author is convinced that

the form of P(t) is approximately exjonentiaL. This thesis

attempts to establish values of e anI p, as function of F,A

and D, to allow e-uation (3.1) to be a reasonaLe estimate.

2
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1. Subrodel for of

In our model, we know that the target startir*j Fosi-

tion is uniformly distributed over tne search area A, and

the searcher has a detection capability over a disk w.,ic.

covers an area fyp2 with probabilty 1. So, we may expect

that at the beginning of the search, i.e., when t=0, detec-

tion proability will be eiual to IR 2 /A.

If we subsititute t=0 in e~uation (3.1), we get

P()= 1-oc

Then

R(t=0)= A =1- M (3.2)

which implies that

CX=I r (3.3)
A.

2. Submodel for

This submodel will include all independeat varialles

r,D,A and t, and will therefore be more complec. ie will

study each independent variable separately in order to

simplify the problem (we will chane one variable while

holding the others fixed.) The relatiornship between anI

these variables will be estimated. Eventually we will

combine these submodels for a final sibmodel.

a. The Relationship Between Ditfusing Constant 2

and

For this case, area size A and ralius P wtre

held fixed at 10000 nm2 10 nm. respectively. Diffusion

constant D was varied between 20 nma/nr and 30) nn 2/hr Ihe

simulation results are displayed in Figures 3.3.

27
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4 I

By using the least s.,uares estimation method on

ln[ 1-P(t)] data values, a best fit 1 was obtained far eaci.

diffusion constant D.

These P values are plotted against the corze-

sponding D values in Figure 3.4. They fall appr£ximately on

a straight line. Again, by usinj the least sjuare estiza-

tion method, the following linear icuition was oitaine1

1 =0.00303+0.000205 D (3.4)
P-0.000205 D
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b. The Relationship Between Area Size A and

This time the diffusion constant D aid detection

radius R were held at 100 nm2/hr and 10 am raspectively.

The area size A was varied between lOOnm 2 and 20300 nm 2 .

The simulation results and the least square estimation

results for the log transformed data values are displayed in

Figure 3.5 and and Table II

rigure 3.6 shows a plot of the best fit

against area size A. These points fit very closely with the

power function

P =0.77A-1.49

(A least squares procedure on the log transforoed data was

used to determine the values 0.77 and -1.49). To achieve

more natural final units, the model is modified slightly as

follows:

=0.77A-1*5  (3.5)
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c. The Relationship Between Detection Radius R and

Again, the same procedures were applied for this

case. R was varied between 1 and 30 nm, while D and A were

held fixed at 100 nm 2/hr and10000 na 2 respectively.

The simulation results and least sgiare estima-

t.ion results are displayed in Figure 3.7 and Table II. In

Figure 3.8, the scatter plot of estimated P vaLues shows a

linear relationship between R and P.
Least sguare estimation for this lin3 is

j =-O.0013 5+0. 00278R (3.61

0.00278R

S
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We can summarize these ooservations is follows:

A -L5

where "a." means "is jro, ortional to" waich suggasts that 5

=K AD (3.7)

A "S 0

for the proiec value of K. To estimate K is the final ,odel

building step.

d. Estimaticn of the Coefficient K

We can calculate the K value for eazh simulation

with the exression

PA
<= /' D(3.8)

R D

where P is the "best fit" value for that similation rUL.

Then with these samile K values we may find best overall

estimate.

In addition to 56 simulations already coimpleted,

25 additional simulations were conductel to produce a total

of 81 sample K values. The histojram and the statistical •

table values for this data are displayed in Figare 3.9.
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if r call ti. t 3 1 .7)

ti

= 1

R

~ K RD
A"-'

Substituting these c and values in e-uation

(3. 1), we derived our final analytical model for first

detection probabilities as follows

7-R 2  K RD
P(t) 1-(A e A 3.9)

wiere P (t) refens- to tne proLalility of first letection

occurs on or U efore tise t.

D. VERIFICAIIOU OF THE MODEL

1. Dimension Analysis

From ecuation (3.9) we see that

KRDt

must he dimcr.sio:..ess. This implies that the cDefficient K

must be dizensionless. (If we had set the power of A to 9

1.L&- versus 1.5, then the diiension of K would be nmQ.2 , not

a natural unit.)
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2. Sensitivity Anal-sis for Indeoendert VacLables

If we hold fixed all indeiendent variables ,D,t and

change the area size A, we will observe that as we increase

tLe A, the probability af detection decreases and vice

versa. This result is deLonstrated in Fi&,Ire 3. 10. As wk

increase the size of the search area, more area will he

available for the target to escape from the searcher.

Therefore we may expect lower detection probabilities for

larger search area sizes.

6 A similar sensitivity analysis is aiplied for tie

other indepenlent variables R,D and t. If we look at the

results displayed in Figur. 3.10, we may observe that as we

ir.rease these variables, the detection pcotabilities

ixcrease simultaneously. These results seem reasonaLle,

because as we increase the searca time or detect ion radius,

we may have more chanses to detect the tar;et. Also an

increase in the D value means that the target will travel

more distance during any time interval and will thus be more

likely to enter the detection disk..
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3. Final Verification

There was no actual data available fron real life

observations. Therefore, the output of DIFSIM is used for

final verification of the model. For this purpose, combinha-

tions of the followiny independent variables we:e used both

in our analytical model and as input to DIFSIM.

D= 40, 80, 140, 200 Nm*2/Hr

P= 2.5, 10, 20, 25 Nm

A= 4000, 8000, 12000, 16000 Nm*2

The outputs are displayed in Figure 3.,11, 3.12,

3.13. It is observed that the simulation and model prob-

abilities are generally very close tc each other. Only

during early search hours do the simulation curves sometimes

go ahove the model curve. This means that our model

predicts fewer detection than the diffusion simulation model

during the early search hours. Since this difference is at

maximum .03 or .04, we conclude that the model provides a

good fit, which gets better for larger time t. For small

t,the model appears to underestimate the pro ability of

detection.
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. , t ., 1:d' '..T I . , t , i . " :' .. ' " t

= c

'fICt ti;t t( h01 -I1 1. ro-hiiity DfL LttCt I V tiEc t

. rally c.:c-cd- that -rE icted Ly t:_ z ~odl .--. ts t hat

t e ii 1sta:ta: edus rroC aSility of eectioII roucec by

,FSi! cxc&(&s (at least in early hours of tha si ua-

tion). To test this hypzthc sis, DiFSIi was cun witn theL

Farameters

D=100 nm 2 /hr

F.= 10 nm
A=1000O rim2

V. Lr. for each 5 hour period hetween 0 and 80 hours, thL..

iast squares Lest fit was ohtaar.Ed. (That is, t.e -,-st

f:tting

A

w s calculated). Zhese values are plotted in Figure 3. 14,

and app.ear to approach from above the model valae of

24.7 x 100 x 10 0247

10000

Thus, in tI.is case at least, it ai;Fears that the ir.star,.ta-

rneous lroLalility of deteztion starts at some high vzlue ,n,

decreases aryajtoticaily to a steady 3tate value given by
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ti2 mcdel 'resented here. Thsobservation rEnlair.s to be

Froved iii general.
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IV. P[COr I LIS: I C.~YYSO

CU-jLAIVP, DEUJ.CTTO!N U~l.LL: TLJ!::!:

il hility fu rcti on, !ol d f or Dlr t:h .tci D~

tir (3 . S3 w we :Lay ai: t;u: 1 4 s ;ci ~i o r 1

* o- -ulati've CQensity (CHtic (t!f for fir:St tci.

t.

These properties are

t->c'

L.~)is F (t) erasr = Li ati'r

2.Fat issur tha no e(t) is a cu erczti jrctn

Ihrfoe wae tae thfie fis forvat Owin;.2.t.
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Since this integration is not equal to 1, the eijation (4.2)

doesn't reprecsent a r2ope2 density funztion for t.

C. EXPECTED FIRST DETECTION TIME

Let F(t) denote the cumulative nondetection krobabilit-..

function (cndf).

F (t)= P(No detection uL to time t) p (T>t)

=I-P(T<t) =1-F(t)

jRD

The following formula can be used to find the expected 0

detection time E:T].
[ ]=F (t) dt (4.4)

f

1f we suistitute (4.3) in (L4.4)

R0

A2S 0 •R

A 1Ri? jiO ~ c

/S
iNRO AAJ.A

0

KRD V A

0 S

KROKA

A'S' "R-

ELTI=NO K

. .. . . . ..54



Exiected first detection times are disiJlayed f oz

differert liffusion constints (D) , area szes (A, ard etacz-

tior radiuses (E) in Figure 4.1.

D. CONDITIONAL DETECTION PBOBABILITY FUNCTIONS

If we assume that there will be no detection at the

beginning of the search period, we may derive tae tollowinl

corilitionai cdf.

F0 (t)=P (Detection up to time t/no det. at time 0)

zPET /T>O]- P[T>OT ,'i]
R(T >O]

p[0 <T,4 ]( 6
P[T>OJ

I we substitute t=0 in eiuation (4.3), we get

P(T>0)= F(0)= ( 1  (4.7)

and

P (0<T,<t)= F (t) -P (t= 0)

e- K O A

By using (4.7) and (4.8) as a dominator and numecatcr in the

ecdation (4.() , we have'D
e-K

Fo= I - e--55

* (". )
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This fuzction (4.9) r-presents a zumulativ2 protabilit'y

function af an exionenti ai distribatic wit, iraEtte-

K- A.s By using this fact, conditional expectei first

detection time E:rTo can be defined as follows:

A f
E[T o =[/No detection at time a ]= 7,RD (0 . 10)

A-so, we car. write conditional detection probability density

function f 0 (t) in the following form,

K Ro
4e A'

If we compare equations 1.4.5) an-. (4.13) , we will

observe that,

A ,R" . / A_ ' <
KRO I<o D R0

so E[T]_<E[TO]. This inequality means that the corditional

first detection time is greater tLan the unconditional first

detection time. We can 4at this conclusion intuitively by

thinking that we have an opportunity to detect the target at

the beginning oZ the search period in the unconditioa. al

case. Therefore, for the unconditional case, we. may ePx:ect

an earlier first detection time than would be possible for

the conditional case.
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V. THE RESULTS AND APPLICATIONS OF THE MODEL

A. EXPECTED DETECTICN TIIE FOB RANDOM TOUR MODEL

As we showed in Chapter II, a diffusion target gives an

upper bound detection probability for the "ejuivalent"

randcm tcur model. Therefore, the diffusion model expectel

detection time, which is estimated by e~uation (4.5) shoull

be a lower bound for random tour expected detection time.

That is, for

E[To]=Diffusion Model Expected Detection Time, and

E[TR =Fandom Tour Model Expected Detection Time, we

have

A 5 flR
-R E[T]

B. ONE-DIMENSIONAL DIFFUSION MODEL

In this thesis, two-dimensional diffusion motion was the

basis for our model. The exponential type curves were ased

to estimate this model's outputs. In addition to this

model, the one-dimensional diffusion model is simulated by

computer program DIFSIM1. In this model, the target moves on

a line segment L, according to diffusion constant D. The

target's starting position is selected uniformly over this

line segment L. Detection occurs whenever the target hits

the designated end point. The target reflects off the cther

end point of line segment.

The results of different simulation results are

displayed in Figure 5.1. Exponential curves, which were

obtained by using the least squares estimation method, were

59



used to estimate the outputs of one-dimensional diffusion

model as we did for two-dimensional case.

So we nay expect that, for three or more diwensional

diffusion models, we may use exponential type curves uh4icA
are generated by a different set of parameters. For three-

dimensional case, these parameters can be defined as

follows:

V=Volume of the cubizal search space.

R=Radius of the cookie-cutter detection sphere.

D=Diffusion constant.

T=Detection time.

C. APPLICATIONS OF THE MODEL

Our model can also be used to estimate the final detec-

tion probability of a system which includes more than one

independent sensor. As an example, we may use the following

scenario:

We want to use n sonobouys in order tD detect a

diffusing target in an area A. Each sonabouy has a

cookiecutter detection capability over a disk with radius 5%;

. Each sonobouy will be independetly located on the center

of a square subsearch area A;and operated for a time period

t. If we make the following assumptions, we may use ejua-

tion (3.9) to estimate the overall detection probability of

this sonobouy pattern at the end of the search period t.

n@

R=(ER; 2)

A=LA;

where R is the effective detection radius.
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This foriaula also gives us an ap-- L~ur.I d#tectior.

irjLabi2.ity for a random to)ur model wtrict moves in tae sdmle

system.

I6



4L 0

4-b

z M

z z
C) 0 0

a -- - Y

'- to r'. 9Du ~

62 * L

.



pI

APPENDIX A

DIFSIM COMPUTER PROGRAM

In order to give access to t~ie logic used in 41uildiLt,

the simulation models DIFSIM and DIFS1.11, a complete pr-ogramT

listing is included in this AppendiX following the list of

variables used in the simulation models.

LI1ST OF VARIABLES

REP =Number of replications.

MAX =DetectioL period as a minute.

E =Radius of detection disk in nautical miles.

DIF =Diffusion constant D in s, uare nautical miles per

hour.

SIDE=The length of the scuare search area side in

nautical miles.

AREA=Area size A ii. sjuare nautical miles.

INC =Time increment t for each discrete stap in

minutes.

PROB=Probability of detection

POSX=X component of target position.

POiSY=Y component of target position.

DI5I=The distance between the target location and the

center of the detection iisk.

IX1 =Seed number for ani.form random number.

Ix2 =Seed number for standard normal random varidLle.
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